Conductive Polymer Based Tantalum Capacitor for Automotive Application

Name: Jane Ye
Date: 2015-10-26
Conductive Polymer Based Tantalum Capacitor for Automotive Application

- Introduction of KO-CAP®
- Development Roadmap and Target
- Technical Challenges
- Solutions and Results
- Path Forward

KO-CAP is a registered trademark of KEMET Electronics Corporation.
KEMET Organic Polymer Electrolytic Capacitors
KO-CAP Basic Construction

- Polymer / $\text{Ta}_2\text{O}_5 / \text{Ta}$
- Silver Paint
- Carbon
- Leadframe (- Cathode)
- Tantalum Wire
- Weld
- Leadframe (+ Anode)
- Silver Adhesive
- Lead Protection
KO-CAP Process

- More than 200 steps

Ta Anode Manufacturing
- Ta Powder Blending
- Anode Pressing
- Delube
- Sintering

Electro-Chemical Processing
- Dielectric Formation
- Polymerization
- Wash and Reformation
- Cathode Coatings (Carbon/Silver Layer)

Assembly and Encapsulation
- Assembly
- Molding

Aging, Burn-in, Testing and Finishing
- Aging
- In-line Burn-in
- Testing
- Packaging

© KEMET Electronics 2015
Automotive Initiative Roadmap

T591 Series
- 125°C/105°C/85°C
- SMD
- Low ESR
- High ripple current capability
- Benign failure mode
- 85°C/85%RH 500 Hours

T598 Series
- 125°C
- SMD
- Low ESR
- High ripple current capability
- Benign failure mode
- 85°C/85%RH 1000 Hours
- Full AEC-Q200

T599 Series
- 150°C capability
- SMD
- 85°C/85%RH 1000 Hours
- Full AEC-Q200

Capabilities Development

FOCUS NOW

2013 2014 2015 2016…
Development Target

• 3000 to 5000 Capacitors per vehicle
Challenges to Meet AEC-Q200

<table>
<thead>
<tr>
<th>Stress Test Name</th>
<th>Conditions</th>
<th>AEC - Q200</th>
<th>KO Commercial</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Temp Exposure (Storage)</td>
<td>125° C, Unbiased, 1000 Hrs</td>
<td>✓</td>
<td>depends</td>
</tr>
<tr>
<td>Temperature Cycling</td>
<td>-55° C to 125° C, 1000 Cycles</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Biased Humidity</td>
<td>85° C, 85% RH, Biased, 1000 Hrs</td>
<td>✓</td>
<td>X</td>
</tr>
<tr>
<td>Operational Life</td>
<td>125° C, Biased, 1000 Hrs</td>
<td>✓</td>
<td>depends</td>
</tr>
<tr>
<td>Resistance to Solvents</td>
<td>Mil-Std-202, Meth. 215</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Mechanical Shock</td>
<td>Mil-Std-202, Meth. 213, Cond F</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Vibration</td>
<td>Mil-Std-202, Meth. 208, 5G’s-20min</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Resistance to Soldering Heat</td>
<td>Mil-Std-202, Meth. 210, Cond D</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>ESD</td>
<td>AEC-Q200- 002 or ISO/DIS 10605</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Solderability</td>
<td>J-STD-002</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Terminal Strength</td>
<td>AEC Q200-006</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Ref. 11 Jayson Young and Javaid Qazi, Polymer Tantalum Capacitors for Automotive Applications CARTS International 2014
ESR Concern under 85°C, 85% RH, Biased

- Example of KOCAP EIA 7343-28 33uF 25V

- Greater ESR shift than that under 60°C, 90% RH, Biased
Failure Analysis of High ESR
85° C, 85% RH, Biased

- Typical Example EIA 7343-28 33uF 25V ESR0.06Ω

- Post test ESR reading > 0.1Ω at 100kHz
- Delamination and crack were detected
Failure Analysis of High ESR
85°C, 85% RH, Biased

- Typical Example of EIA 7343-28 33μF 25V ESR 0.06Ω

- Post test ESR reading > 0.1Ω at 100kHz

- Delamination confirmed with ion milling cross section SEM by NEC-Tokin lab

- Good connection of good ESR or improved samples

Delamination and cracks of cathode material is responsible for higher ESR parts
DC Leakage Concern
KO-CAP 85°C, 85% RH, Biased

- KOCAP 7343-28 33uF 25V 0.06ESR

- Leakage tailed up to 0.5CV
- Short circuit occurred in extreme cases
The Cu found in the Ta wire imprint appeared typical of a migration pattern usually found as a result of moisture penetration in a biased part.
Simulation of Copper Migration

PCT 121°C C 85%RH 1.7 Atmosphere for 42Hrs

- EIA 7343-28 33uF 25V ESR 0.06Ω
 - 64 pieces

- Assembled with copper alloy based leadframe before encapsulation

- A low concentration of ferric tosylate solution was applied to the strips and dried to simulate the chemical residuals from polymerization of PEDOT

- Pre-treated strips were placed into a chamber of 121 °C 85% RH with a pressure of 1.7 atmosphere for 42Hrs. 0.67Vr applied

- Electrically and Physically Inspected

Leadframe corrosion and copper migration was observed
Mechanism Summary

1. Moisture Adsorption
2. Swelling of layer
3. Crack / GAP
4. De-depoing with DC
5. ESR Failures

- Ion dissolution (Cl, Ferric)
- Anodic of Copper with DC
- Copper ion move to cathode
- Copper ion reduction to metal
- Dendrites growth
- Conductor bridge (Path)
- Moisture
- CTE/CME Stress
- Short Circuit
Design Actions Implemented

• Factor 1: Moisture
 – 1) Use lower moisture permeability mold compound
 – 2) Optimize the application of moisture barrier to polymer capacitors

• Factor 2: Ionic Contaminations
 – 3) Further optimize wash process
 – 4) Reduce ionic species in molding

• Factor 3: Leadframe Substrate
 – 5) Use alloy with less copper content, more resistant to corrosion

• Factor 4: Distance between conductors
 – 6) Improve the wire laser clean technology
Improvement Results
85°C, 85% RH Biased, 1000 Hours

- Example of EIA7343-28 100uF 16V ESR 0.05Ω
Example of EIA7343-28 100uF 16V ESR 0.05Ω
Path Forward

• **Expand** the T598 product line with additional part numbers

• **Develop** a new series (T599) that has 150 °C 1000 hour life in addition to the specification of T598 in the near future

• **Enlarge** the application of tantalum polymer capacitor in the automotive and other market where harsh operating environment is of concern
Thank You!

Team
Jane Ye, Manager of KO-CAP NPD (Suzhou)

Chris Stolarski, Director of Spec. Platform and Ta Powder Development (USA)

Mel Yuan, Chief Development Engineer (Suzhou)

Cristina MotaCaetano, Director of Ta Technical Marketing (USA)
For more information visit:
https://ec.kemet.com/wp1017